Ramified Frege Arithmetic
نویسنده
چکیده
Frege’s definitions of zero, predecession, and natural number will be explained below. As for second-order Dedekind-Peano arithmetic, the axiomatization most convenient for our purposes is the following: (1) N0 (2) Nx∧Pxy→ Ny (3) ∀x∀y∀z(Nx∧Pxy∧Pxz→ y = z) (4) ∀x∀y∀z(Nx∧Ny∧Pxz∧Pyz→ x = y) (5) ¬∃x(Nx∧Px0) (6) ∀x(Nx→∃y(Pxy)) (7) ∀F(F0∧∀x∀y(Nx∧Fx∧Pxy→ Fy)→∀x(Nx→ Fx) If (slightly non-standardly) we take Frege arithmetic to be the second-order theory whose non-logical axioms are HP and Frege’s definitions of the arithmetical notions, re-construed as axioms, then Frege’s Theorem may
منابع مشابه
Amending Frege's Grundgesetze der Arithmetik
Frege’s Grundgesetze der Arithmetik is formally inconsistent. This system is essentially second-order logic together with an abstraction operator that abides to Frege’s Axiom V. A few years ago, Richard Heck showed that the ramified predicative second-order fragment of the Grundgesetze is consistent. In this paper, we show that the above fragment augmented with the axiom of reducibility for con...
متن کاملAmending Frege’s Grundgesetze der Arithmetik [draft]
Frege’s Grundgesetze der Arithmetik is formally inconsistent. This system is, except for minor differences, second-order logic together with an abstraction operator governed by Frege’s Axiom V. A few years ago, Richard Heck showed that the ramified predicative second-order fragment of the Grundgesetze is consistent. In this paper, we show that the above fragment augmented with the axiom of redu...
متن کاملA New "Feasible" Arithmetic
A classical quantified modal logic is used to define a “feasible” arithmetic A2 whose provable functions are exactly the polynomial-time computable functions. Informally, one understands α as “α is feasibly demonstrable”. A2 differs from a system A2 that is as powerful as Peano Arithmetic only by the restriction of induction to ontic (i.e. -free) formulas. Thus, A2 is defined without any refere...
متن کاملVariations of Frege’s Grundgesetze
We retain the Grundgesetz V , but replace impredicative comprehension with certain ramified comprehension principles.
متن کاملNon-Commutative Formulas and Frege Lower Bounds: a New Characterization of Propositional Proofs
Does every Boolean tautology have a short propositional-calculus proof? Here, a propositionalcalculus (i.e. Frege) proof is any proof starting from a set of axioms and deriving new Boolean formulas using a fixed set of sound derivation rules. Establishing any super-polynomial size lower bound on Frege proofs (in terms of the size of the formula proved) is a major open problem in proof complexit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Philosophical Logic
دوره 40 شماره
صفحات -
تاریخ انتشار 2011